Well-defined liquid crystal gels from telechelic polymers.

نویسندگان

  • Yan Xia
  • Rafael Verduzco
  • Robert H Grubbs
  • Julia A Kornfield
چکیده

Well-defined liquid crystal networks with controlled molecular weight between cross-links and cross-link functionality were prepared by "click" cross-linking of telechelic polymers produced by ring-opening metathesis polymerization (ROMP). The networks readily swell in a small molecule liquid crystal, 5CB, to form LC gels with high swelling ratios. These gels exhibit fast, reversible, and low-threshold optic switching under applied electric fields when they are unconstrained between electrodes. For a given electric field, the LC gels prepared from shorter telechelic polymers showed a reduced degree of switching than their counterparts made from longer polymer strands. The reported approach provides control over important parameters for LC networks, such as the length of the network strands between cross-links, cross-linker functionality, and mesogen density. Therefore, it allows a detailed study of relationships between molecular structure and macroscopic properties of these scientifically and technologically interesting networks.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-assembled liquid-crystalline gels designed from the bottom up.

Liquid crystals are often combined with polymers to influence the liquid crystals' orientation and mechanical properties, but at the expense of reorientation speed or uniformity of alignment. We introduce a new method to create self-assembled nematic liquid-crystal gels using an ABA triblock copolymer with a side-group liquid-crystalline midblock and liquid-crystal-phobic endblocks. In contrast...

متن کامل

A Molecular Picture for the Thermo-Reversibility of Gels Formed by Isophthalic Acid- Ended Telechelic Polymers

We demonstrate that isophthalic acid-ended telechelic poly(1,5-cyclooctadiene)s (APCODs) form thermo-reversible gels in non-polar solvent with a unique molecular mechanism for their thermo-reversibility. Like other associative telechelic polymers, A-PCODs form “flower-like” micelles at low concentration and form gels through bridging at higher concentration which exhibit linear viscoelasticity....

متن کامل

End–Functionalized Polymers: Versatile Building Blocks for Soft Materials

We present a concise review of telechelic polymers of various architectures, focusing on the structure, solute solvent interactions, aggregation processes, equilibrium and dynamical properties and applications. Telechelics are macromolecules with functionalized, mutually attractive endgroups, which assume a variety of conformations that depend on solvent quality, salinity and pH of the solvent,...

متن کامل

Hierarchical self-assembly of telechelic star polymers: from soft patchy particles to gels and diamond crystals

The design of self-assembling materials in the nanometer scale focuses on the fabrication of a class of organic and inorganic subcomponents that can be reliably produced on a large scale and tailored according to their vast applications for, e.g. electronics, therapeutic vectors and diagnostic imaging agent carriers, or photonics. In a recent publication (Capone et al 2012 Phys. Rev. Lett. 109 ...

متن کامل

A triple carboxylic acid-functionalized RAFT agent platform for the elaboration of well-defined telechelic 3-arm star PDMAc.

This communication describes the synthesis of a triple acid-functionalized RAFT agent and its use to prepare well-defined 3-arm star polymers of N,N-dimethylacrylamide (DMAc). A simple esterification reaction allowed the convenient integration of three electron-rich naphthalene recognition units on the RAFT agent platform and subsequently the elaboration of a naphthalene end-decorated telecheli...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 130 5  شماره 

صفحات  -

تاریخ انتشار 2008